Тиристорный пускатель — Электрические аппараты

ТИРИСТОРНЫЕ ПУСКАТЕЛИ

Предыдущая16171819202122232425262728293031Следующая

 

Цель работы:

 

1) изучение схем управления тиристорными пускателями;

2) исследование режимов работы тиристорных пускателей.

 

Программа работы:

 

1. Ознакомиться с принципом работы и устройством однофазного тиристорного пускателя ПБР-2М (рис. 4.10) и трехфазного тиристорного пускателя ПБР-3А (рис. 4.11).

2. Исследовать работу тиристорных пускателей ПБР-2М и ПБР-3А при управлении электродвигателями в режиме пуска, реверса и останова.

 

Порядок выполнения работы:

 

1. Изучить конструкцию и принцип работы однофазного тиристорного пускателя ПБР-2М и трехфазного пускателя ПБР-3А.

 

2. Исследовать режимы работы тиристорных пускателей:

 

а) собрать схему управления однофазным тиристорным пускателем ПБР-2М согласно техописания и рис. 4.13, для осуществления пуска электродвигателя, его реверса и останова;

б) собрать схему управления трехфазным тиристорным пускателем ПБР-3А согласно техописания и рис. 4.14, для осуществления пуска электродвигателя, его реверса и останова.

 

Рис. 4.12. Схемы управления тиристорами

 

 

Рис. 4.13. Электрическая схема соединения тиристорного пускателя ПБР-2М с однофазным электродвигателем

Рис. 4.14. Электрическая схема соединения тиристорного пускателя ПБР-3А с трехфазным электродвигателем.

 

КОНТРОЛЬНЫЕ ВОПРОСЫ:

 

 

1. Объясните принцип действия и работу основных элементов схемы управления и защиты трехфазного тиристорного пускателя ПБР-3А.

2. В чем отличие работы однофазного бесконтактного реверсивного пускателя ПБР-2М от трехфазного ПБР-3А?

3. Особенности работы тиристорных пускателей на постоянном токе.

4. Возможности регулирования напряжения при использовании тиристорных пускателей.

5. Какими преимуществами и недостатками тиристорный пускатель обладает по сравнению с контактным пускателем?

Предыдущая16171819202122232425262728293031Следующая

Date: 2015-09-24; view: 511; Нарушение авторских прав

Понравилась страница? Лайкни для друзей:

Бесконтактные контакторы и пускатели на базе тиристорных элементов.

Общие сведения.На основе тиристоров возможно осуществление следующих операций:

1) включение и отключение электрической цепи с актив­ной и смешанной (индуктивной и емкостной) нагрузкой;

2) изменение тока нагрузки за счет регулирования мо­мента подачи сигнала управления.

Наиболее широкое применение в бесконтактных элек­трических аппаратах получили фазовое и широтно-импульсное управление (рис. 1).

В первом случае среднее и действующее значения тока меняются зa счет изменения момента подачи на тиристор открывающего сигнала — за счет угла . Угол называ ется углом управления. Действующее напряжение на на­грузке при двухполупериодной схеме и встречно-парал­лельном включении двух тиристоров (рис. 2)

 

где Uт— амплитуда напряжения питания; Uc, Uно— дей­ствующее и среднее значения напряжения питания; у — угол регулирования.

 
 

 

 

Рис. 1. Напряжение на нагрузке при фазовом (а), фазовом с принудительной коммутацией (б) и широтно-импульсном (в) управлении

 
 

 

 

Рис. 2. Встречно-параллельное включение тиристоров (а) и форма тока при активной нагрузке (б)

Кривая тока в сети и в нагрузке не синусоидальна, что вызывает искажение формы напряжения сети и наруше­ния в работе потребителей, чувствительных к высокочастот­ным помехам. Для уменьшения этих искажений необходи­мы специальные меры.

При широтно-импульсном управлении (рис. 1, в) в течение времени Тоткр на тиристоры подан открывающий сигнал, они открыты и к нагрузке приложено напряжение UH. В течение времени Тзакр управляющий сигнал снят и ти­ристоры закрыты. Действующее значение тока в нагрузке

 

где — ток нагрузки при Тзакр=0.

Регулирование тока нагрузки возможно за счет изменения как угла , так и угла . Принудительная коммутация ( <180°) осуществляется с помощью специальных узлов или специальных тиристоров, которые могут запи­раться подачей сигнала управления. При больших токах из-за сложности такие схемы не применяются. Создание транзисторов на большие токи (сотни ампер) и большие напряжения (сотни вольт) позволяет упростить принуди­тельную коммутацию цепей постоянного и переменного то­ка, что особенно важно в аппаратах повышенного быстро­действия.

На основе тиристоров работают следующие бесконтакт­ные электрические аппараты:

1) тиристорные пускатели для прямого пуска асинхрон­ных двигателей;

2) тиристорные пускатели для плавного пуска, реверса и останова асинхронных двигателей большой мощности (до 5000 кВт);

3) регуляторы мощности и напряжения;

4) автоматические выключатели переменного тока высо­кого и низкого напряжения повышенного быстродействия;

5) регулирующие аппараты для управления двигателя­ми электрического транспорта переменного тока с рекупе­рацией энергии при торможении.

Для тиристорных аппаратов, как правило, необходима защита от токов перегрузки и КЗ, а также от недопустимого повышения темпера­туры корпусов тиристоров.

Защита от КЗ в данном случае осуществля­ется спомощью быстродействующих токоограничивающих предохрани­телей или автоматических выключателей.

Ниже приводятся основные технические данные тиристорных пуска­телей и регуляторов, выпускаемых отечественной промышленностью.

Пускатели тиристорные серии ПТ. Вфазах А и В пускателя (рис. 3) установлены трансформаторы тока ТА1 и ТА2, обеспечива­ющие работу устройства токовой зашиты. Защита тиристоров от пере­грузки осуществляется терморезистором Rt. Поскольку пускатель пред­назначен для реверса двигателя, то в фазах А и В установлены допол­нительные комплекты встречно включенных тиристоров. При нажатии кнопки «Пуск вперед» включается реле KI, которое подает напряжение на управляющие электроды тиристоров, участвующих в пуске «Вперед». При нажатии кнопки «Пуск назад» включается реле КЗ и подастся на­пряжение на управляющие электроды тиристоров, участвующих в пус­ке «Назад». Питание блока защиты и реле К1 и КЗ осуществляется выпрямителем, питающимся от фаз В и С.

Основные параметры пускателя: Uном — 380 В; Iном— 40 А; Iпуск = 360 А при tпуск =0,4с; электрическая износостойкость циклов; ре­сурс работы не менее 10 000 ч.

 
 

 

Рис. 3. Тиристорный пускатель типа ПТ

 

Тиристорный пускатель.

На рис.

ТИРИСТОРНЫЙ ПУСКАТЕЛЬ

4 показан один из вариантов схемы бесконтактного — тиристорного пускателя. Силовой блок Б1 содержит силовые тиристоры VS1VS3 и диоды VD1VD3, рассчитанные на номинальный и пуско­вой токи двигателя М. При подаче сигнала управления на электроды 12, 34, 56 тиристоры открываются и двигатель подключается к се­ти. В отрицательный полупериод, когда тиристоры закрываются отри­цательным анодным напряжением, ток двигателя проходит по диодам VD1VD3. Диоды могут быть заменены тиристорами.

При снятии сигнала управления (при перегрузке, потере фазы, на­жатии кнопки «Стоп») тиристоры закрываются. Следующий полупериод тока пропускается диодами. После этого диоды VD1, VD2, VD3 за­крываются и двигатель отключается от сети. По тиристорам и диодам протекает лишь небольшой ток утечки.

Сигналы управления тиристорами формируются в блокинг-генераторе Б2, который получает напряжение от блока питания БЗ. При на­жатии кнопки «Пуск» включается тиристор VS5 и все напряжение при­кладывается к резистору R3. При этом транзистор VT3 закрыт, так как напряжение на резисторе R3 больше, чем на резисторе R4. По мере за­ряда конденсатора С2 наступают условия для открытия транзистора VT3 и конденсатор С2 начинает разряжаться на обмотку , трансфор­матора Т2. Электродвижущая сила, наводящаяся при этом на обмотке способствует быстрому и полному открытию транзистора VT3. При разряде конденсатора напряжение на резисторе R3 возрастает, транзис­тор VT3 закрывается и снова начинается заряд конденсатора С2. Та­ким образом, генерируются импульсы тока в обмотке и в трех вы­ходных обмотках появляются управляющие импульсы. Диоды VD5—VD7 пропускают импульсы только положительной полярности.

Длительность импульса 30 мкс при паузе между импульсами 300 мкс (частота около 3 кГц).

Аналогичные схемы могут управляться сигналами постоянного тока или переменным током низкой частоты. Использование блокинг-генератора дает возможность быстро включать тиристор и уменьшить нагруз­ку по его управляющему электроду.

При нормальном режиме транзистор VT2 блока Б2 насыщен и лам­па Л2 не горит. Если на контакты 7, 8 блока Б2 подано напряжение с одноименных контактов блока защиты Б4, тиристор VS4 открывается и блокинг-генератор лишается питания. Блок питания БЗ включается только на резистор R8. При потере питания генерация в блоке Б2 пре­кращается и тиристор VS5 отключается. Одновременно транзистор VT2 закрывается и загорается лампа Л2, сигнализируя об отключении пус­кателя от защиты. В случае потери фазы в выходном напряжении (по­сле диодов VD8—VD11) появляется пауза. В эту паузу блок Б2 останавливается и тиристор VS5 отключается, что ведет к закрытию си­ловых тиристоров.

Блок Б4 защиты двигателя и силовых тиристоров от перегрузки питается от трансформаторов тока ТА1—ТАЗ. Напряжение с нагрузоч­ных резисторов выпрямляется и подается на потенциометр R1. Пара­метры трансформаторов ТА1—ТАЗ и резисторов R1, R5—R7 выбира­ются так что при номинальном токе во всех трех фазах напряжение, снимаемое с потенциометра R1, меньше напряжения пробоя стабили­трона VD11. До тех пор пока напряжение на стабилитроне меньше на­пряжения пробоя (1/<Упроб), сопротивление стабилитрона очень вы­соко. При этом ток базы транзистора VT1 недостаточен для его откры­тия. Если ток хотя бы в одной фазе превысит номинальное значение, то возникает неравенство U>Uпроб, сопротивление стабилитрона резко падает, ток в базе VT1 возрастает и он насыщается. Ток в стабилитро­не ограничивается резистором R2 до допустимого значения. Если вос­становится неравенство U<Uпроб, то сопротивление стабилитрона снова возрастет, транзистор VT1 закроется. После открытия транзистора VT1 начинается заряд конденсатора С1. Напряжение с конденсатора С1 на выход 7, 8 не подается до тех пор, пока не превысит напряжение пере­ключения динистора VD4. Динистор имеет такую же вольт-амперную характеристику, как и тиристор при Iу= 0. Если перегрузка была на­столько кратковременной, что конденсатор С2 не успел зарядиться, то напряжение на выходе 7, 5 не появится и пускатель останется в работе. Если Uc станет больше напряжения переключения динистора VD4, про­изойдет разряд конденсатора С1 на цепь управления тиристора VS4 блока Б2 и последний откроется. При этом прекратится генерация им­пульсов, открывающих VS1VS3, и двигатель остановится. Параметр срабатывания блока защиты регулируется потенциометром R1. За счет усложнения блока защиты можно создать выдержку времени в зависи­мости от условия перегрузки. Защита двигателя и силовых тиристоров от токов КЗ в данном пускателе осуществляется быстродействующими предохранителями FU1FU3 типа ПНБ-5.

 
 

 

 

\

 

Рис. 4. Тиристорный пускатель

 

По сравнению с контактными тиристорный пускатель обладает следующими преимуществами:

1. Отсутствие электрической дуги при коммутациях делает аппарат незаменимым при работе во взрывоопасных и пожароопасных средах.

2. Высокая электрическая износостойкость (15-10е циклов).

3. Совершенная защита от токов перегрузки и КЗ, а также при по­тере фазы, что обеспечивает увеличение срока службы двигателей.

4. Допустимое число включений достигает 2000 в час.

5. Длительность отключения не превышает 0,02 с.

6. Высокая надежность и долговечность, а также отсутствие необ­ходимости в уходе при эксплуатации.

Недостатками тиристорного пускателя являются сложность схемы, большие габариты и высокая стоимость. Несмотря на эти недостатки, бесконтактные пускатели находят широкое применение во взрыво- и по­жароопасных производствах и других областях техники, требующих вы­сокой надежности.

 

 

 

Предыдущая123456789101112Следующая

Как собрать пускатель на теристорах большой мощности?

 

Бесконтактный 3-х фазный пускатель ДМ-3Р

 

ДМ-3Р-80А
Модуль для управления 3-х фазным ассинхронным двигателем до 8 кВт.
Модуль позволяет включать и выключать двигатель слаботочными цепями.
Ток управления модулем — 10-20мА

Бесконтактный пускатель

 

 

Модуль позволяет реверсировать двигатель.
Модуль является заменителем двух механических 3-х фазных пускателей.

Обычно в схемах управления двигателем используют обычные механические пускатели типа ПМ, ПМА, ПМЛ. Но применение бесконтактных пускателей имеет ряд преимуществ:
— увеличенный срок эксплуатации
— не подвержены загрязнению контактов
— отсутствие дуги
— отсутствие дребезга контактов

В качестве минуса данного изделия можно отметить разве что цену.

Но если у вас в схеме пускатель работает с многократными и частыми включениями-выключениями устройств, то решение по применению бесконтактных пускателей окупит себя довольно быстро.

Если в вашей схеме нужна коммутация бОльших токов то вы можете применить другой тип бесконтактного пускателя.

Пускатель может коммутировать:
— спирали в печи, нихромовые или другие.
— электродвигатели мощностью до 160 кВт
— освещение цеховое или уличное
— любую нагрузку до 160кВт

Возможно при использовании подобного контактора вас заинтересует другая наша продукция для автоматизации производства.

 

 

 

 

Выключатели тиристорные

 

Для коммутации силовых цепей переменного тока используются преимущественно тиристоры. Они способны пропускать большие токи при малом падении напряжения, включаются сравнительно просто подачей на управляющий электрод маломощного импульса управления. При этом их основной недостаток — трудность выключения — в цепях переменного тока не играет роли, так как переменный ток обязательно два раза за период проходит через нуль, что обеспечивает автоматическое выключение тиристора.

Схема однофазного тиристорного коммутирующего элемента приведена на рис. 9.1.9. Импульсы управления формируются из анодных напряжений тиристо­ров. Если на аноде тиристора VS1 положительная полуволна напряжения, то при замыкании контакта К через диод VD1 и резистор R пройдет импульс тока управ­ления тиристором VS1. В результате тиристор VS1 включится, анодное напряжение упадет почти до нуля, сигнал управления исчезнет, но тиристор останется в прово­дящем состоянии до конца полупериода, пока анодный ток не пройдет через нуль. В другой полупериод, при противоположной полярности напряжения сети, анало­гично включается тиристор VS2. Пока контакт К будет замкнут, тиристоры будут автоматически поочередно включаться, обеспечивая прохождение тока от источни­ка к нагрузке.

Контакторы (пускатели).Тиристорные элементы (рис.9.1.9) являются основой однофазных и трехфазных контакторов. На рис. 9.1.10 в качестве примера изображена схема реверсивного пускателя для асинхронных двигателей. Силовыми коммутирующими элементами являются тиристоры VS1 — VS10, которые открываются контактами К11, К12, К13 реле К1 (вперед) или контактами К21, К22, К23 реле К2 (назад). Трансформаторы тока ТА1 и ТА2 подают сигнал перегрузки в блок защиты БЗ, который, воздействуя на базу транзистора VT, снимает питание реле К1 и К2 и тем самым отключает пускатель.

Аналогично устроены тиристорные станции управления асинхронными нерегулируемыми электроприводами мощностью до 100 кВт типа ТСУ. Станции выполняют операции пуска, останова, динамического торможения и реверса двигателя.

Использование тиристоров в качестве бесконтактных аппаратов на постоянном токе затруднительно из-за проблемы отключения. Если в цепях

 

переменного тока тиристоры включаются автоматически при прохождении тока через нуль, то в цепях постоянного тока приходится применять специальные меры по принудительному снижению тока тиристора до нуля, т. е. производить так нарываемую принудительную коммутацию тока тиристора. Существует много разнообразных схем принудительной коммутации. Большинство из них содержит коммутирующие конденсаторы, которые в нужный момент с помощью вспомогательных тиристоров вводятся в цепь основного тиристора и включают

его.

 

Рис. 9.1.9. Схема однофазного тиристорного коммутирующего элемента

 

На рис. 9.1.11 изображена одна из схем принудительной коммутации. При подаче управляющего импульса на силовой тиристор VS включается цепь нагрузки Rн, (ток через тиристор iT равен сумме токов нагрузки iН и через конденсатор iС), коммутирующий конденсатор С заряжается до напряжения источника U. Полярность напряжения исуказана на рис. 9.1.11, а. Схема готова к отключению, и если в момент t1подать управляющий импульс на вспомогательный тиристор VSB, то конденсатор С окажется включен ым

 

Рис. 9.1.10. Схема нереверсивного пускателя

 

параллельно тиристору VS, ток нагрузки перейдет с тиристора VS на конденсатор С и тиристор VS выключится. Под действием ЭДС источника конденсатор будет перезаряжаться. Напряжение конденсатора исизменится в процессе перезаряда от — U до +U (рис. 9.1.11,б), а ток icпостепенно спадет до нуля. Нагрузка окажется отключенной от источника. Если теперь снова в момент t2включить нагрузку , открыв тиристор VS, то опять конденсатор С зарядится до напряжения — U и схема будет готова к повторному отключению.

Таким образом, отключение тиристора на постоянном токе оказывается сложнее, чем на переменном. Эта проблема решится окончательно лишь после

 

 

Рис. 9.1.11. Схема тиристорного выключателя постоянного тока (а) и диаграмма его работы (б)

 

 

Рис. 9.1.12. Схема бесконтактного выключателя Рис. 9.1.13. Осциллограмма отключения тока короткого замыкания

 

создания мощных, полностью управляемых тиристоров, способных запираться при воздействии только на цепь управления.

Выключатели автоматические.На базе тиристорных элементов (см. рис. 9.1.9) выполняются автоматические бесконтактные выключатели серии ВА81 на токи до 1000 А. Они предназначены для защиты электрических установок в сетях напряжением 380/660 В переменного тока частотой 50 — 60 Гц при перегрузках и коротких замыканиях, а также для коммутаций с различной частотой включения. В этих выключателях применяется принудительное выключение тиристоров с помощью схемы принудительной коммутации (рис.

9.1.12). Основной тиристор VS1 серии Т-160 управляется импульсами от генератора повышенной частоты (на рисунке не показан). Выключение тиристора VS1 производится разрядом конденсатора С через коммутирующий тиристор VS2. Последний включается от напряжения коммутирующего конденсатора С через маломощный тиристор VS3,


что обеспечивает снижение мощности схемы управления. Конденсатор С заряжается от напряжения сети через трансформатор и диод VD1. Каждый выключатель состоит из трех силовых блоков с встречно-параллельно включенными основными тиристорами.

Благодаря использованию принудительной коммутации тиристоров защита от коротких замыканий осуществляется с ограничением тока в процессе отключения. На рис. 9.1.13 изображена осциллограмма отключения тока короткого замыкания тиристорным выключателем. Кривая 1 показывает нарастание тока короткого замыкания при отсутствии защиты, а кривая 2 — при отключении тиристорного выключателя схемой принудительной коммутации. Как видно из рисунка, в этом, случае нарастание тока короткого замыкания прерывается и максимальный ток imax составляет не более 0,02 — 0,05 ударного тока короткого замыкания.

Устройства выходные (промежуточные реле).Схемы на рис. 9.1.9 широко используются в качестве коммутирующих устройств цепей управления исполнительных аппаратов (пускатели, контакторы, электромагниты, муфты и т. п.). Примером могут служить устройства выходные бесконтактные типа УВБ-11, которые предназначены для усиления выходных командных сигналов логических устройств и коммутации цепей нагрузки переменного и постоянного тока. Они рассчитаны на коммутацию цепей переменного тока до 6 А и напряжением до 380 В, цепей постоянного тока до 4 А и 220 В.

На рис. 9.1.14 приведена схема усилителя УВБ-11-19-3721, предназначенная для коммутации цепей переменного тока. В качестве коммутирующего элемента используется симистор VS типа ТС2-25, зашунтированный варистором R для защиты . от перенапряжений. Включение симистора осуществляется путем соединения его управляющего электрода с одним из силовых выводов с помощью контакта герконового реле К. Это реле одновременно осуществляет и гальваническую развязку входной и выходной цепей. Выключение сеимистора

 

 

Рис.

Тиристорный пускатель , собрать пускатель из тиристоров Т161

9.1.14. Усилитель УВБ-11-19-3721: а — условное обозначение; б — функциональная схема

 

при разомкнутом контакте К происходит самопроизвольно при первом переходе тока нагрузки через нуль.

Для того чтобы схема управлялась логическими сигналами от других элементов, предусмотрен согласующий каскад на ИС типа К511ЛИ1, выход которого подключен к обмотке герконового реле К.

В усилителях, предназначенных для коммутации цепей нагрузки

 

постоянного тока, эта коммутация осуществляется тиристором, который выключается с помощью схемы принудительной коммутации, т. е. путем разряда на тиристор заряженного заранее конденсатора.

 

 

ЛЕКЦИЯ № 30

9.2. Микропроцессоры и электронные управляющие машины

 

9.2.1. Общие сведения.

9.2.2. Функциональная схема ЭВМ.

9.2.3. Электронные и микропроцессорные аппараты, их классификация и

физические явления в них.

9.2.4.Функциональная схема управления электродвигателем постоянного

тока с помощью микропроцессора.

 

Общие сведения

 

В настоящее время для улучшения технических характеристик, повышения надежности и сокращения времени монтажа аппараты автоматического управления и регулирования электрического привода выполняются в виде комплектных станций управления (КСУ). Эти станции проектируются по типовым схемам и собираются на заводе-изготовителе с применением наиболее высокопроизводительного оборудования, что ведет к сокращению материалоемкости и трудоемкости, позволяет быстро внедрять новейшие достижения науки и техники. КСУ создаются на базе либо традиционных электромагнитных аппаратов (автоматов, пускателей, контакторов, реле), либо дискретных полупроводниковых элементов, либо совместного использования и тех и других изделий. Для КСУ характерна фиксированная последовательность всех функциональных операций. Любое изменение поставленной ранее функциональной задачи требует перемонтажа принципиальной схемы КСУ и последующей наладки, что связано с затратами дополнительного труда и, времени. Поэтому создаваемые в настоящее время системы программного управления металлорежущими станками, роботами, технологическими процессами требуют наличия легко изменяемой программы управления.

Развитие полупроводниковой техники привело к созданию больших

 

 

Рис. 9.2.1. Функциональная схема ЭВМ

 

интегральных микросхем (БИС) с очень высокой степенью интеграции. БИС на одном кристалле имеют несколько десятков тысяч элементов и способны реализовать сложнейшие функции управления. Применение БИС в комплектных

 

устройствах автоматического управления создает исключительно широкие возможности в гибком изменении их программ, уменьшении габаритов, повышении надежности и долговечности. На основе БИС создаются микропроцессоры.

 


Дата добавления: 2017-05-02; просмотров: 2548;


Похожие статьи:

ТИРИСТОРНЫЕ КОНТАКТОРЫ ПЕРЕМЕННОГО ТОКА

Для коммутации силовых цепей переменного тока раз­работано много различных типов электрических аппаратов: автоматические выключатели, электромагнитные контакторы:

 

и др. Большинство из них основано на механическом вза­имодействии отдельных узлов и деталей. Наличие подвижных узлов и деталей обусловливает инерционность процессов за­мыкания и размыкания электрических контактов. Обычно время включения и выключения таких аппаратов находится в диапазоне от десятых до сотых долей секунды в зависимости от типа коммутационного аппарата.

Полупроводниковые ключевые элементы позволяют сущест­венно повысить быстродействие коммутационных аппаратов. С этой целью разработан ряд схем, так называемых бескон­тактных коммутационных аппаратов, выполненных преимуще­ственно на основе тиристоров. В литературе такие аппараты часто именуются тиристорными контакторами. Отсутствие подвижных частей и металлических контактных соединений делает эти устройства значительно более надежными и быст­родействующими. Кроме того, как и все схемы с полупровод­никовыми приборами, они обладают большим сроком службы.

В простейшем исполнении силовая часть однофазного тиристорного контактора представляет собой два встречно-параллельно включенных тиристора (рис. 1 а)или один симметричный тиристор. Если тиристоры проводят ток, то контактор включен, если тиристоры ток не проводят, то контактор выключен. Так как ток переменный, то одну полуволну тока проводит тиристор VS1, а другую — тиристор VS2.

Различие между ними заключается в законе управления тиристорами. В регуляторе управляющие импульсы на тиристоры поступают с различными углами управления a, а в контакторе — таким образом, чтобы каждый тиристор проводил одну или несколько полных полуволн тока либо оба тиристора были выключены.

Поскольку тиристор является не запираемым по управлению элементом, то для его выключения необходимо обеспечить спадание тока до нуля. Если контактор включен в цепи с активным сопротивлением ZH = RH(рис. 1 а), то моменты прохождения через нуль тока и напряжения совпадают. При активно-индуктивной нагрузке ток отстает от напряжения, переход тока с одного тиристора на другой происходит позже па угол jн, который определяется коэффициентом мощности нагрузки (рис. 1 б). Для того чтобы выключить тиристор раньше момента прохождения тока коммутируемой цепи через нуль, необходимо применять искусственную коммутацию ти­ристоров.

В зависимости от того, выключаются тиристоры под воздействием естественного снижения переменного тока до нуля или посредством их искусственной коммутации, различают тиристорные контакторы с естественной коммутацией (ТКЕ) и искусственной коммутацией (ТКИ). Для того чтобы вы­ключить ТКЕ, достаточно прекратить подачу управляющих импульсов на тиристоры. В этом случае максимальное время выключения тиристора не будет превышать половины периода выходного напряжения. Например, если прекратить подачу управляющих импульсов в момент включения очередного тиристора, то он будет проводить полуволну тока, т. е. в течение 180°, а другой тиристор уже не сможет включиться из-за отсутствия управляющего импульса.

При необходимости иметь время выключения меньшим, чем половина периода выходного напряжения, следует при­менять ТКИ. Однако в этом случае возникает проблема отвода энергии, накопленной в индуктивностях нагрузки, при обесточивании цепи, соединяющей источник электроэнергии с нагрузкой. Это связано с тем, что согласно основным законам коммутации ток в индуктивности не может изменяться скачком. Поэтому чем быстрее происходит отключение цепи, содержащей индуктивность, с током, отличным от нуля, тем большие перенапряжения возникнут на отключающем аппарате. Указанные перенапряжения являются следствием наведения ЭДС в индуктивности, препятствующей изменению значения тока нагрузки. Для устранения перенапряжений (опасных для элементов коммутационного аппарата) следует в случае при­менения ТКИ предусматривать возможность отвода или сброса энергии, накопленной в индуктивностях нагрузки, в какой-либо приемник или накопитель электроэнергии. В частности, таким приемником может служить конденсатор или источник перемен­ного тока, способный принимать электроэнергию.

На рис. 2 а, представлена схема ТКИ, в которой отключение основных тиристоров VS1, VS2 производится с помощью колебательного контура, элементами которого являются конденсатор CK и реактор LK. Такие схемы в ли­тературе иногда называют схемами с параллельной ком­мутацией. Когда ТКИ включен, то ток нагрузки протекает и один полупериод через тиристор VS1 и диод VD1; а в другой — через тиристор VS2 и диод VD2. Коммутирующий конденсатор Ск заряжен от маломощного вспомогательного трансформатора Тр с полярностью, указанной на рис. 2, и отделен от основных тиристоров и диодов коммутирующим тиристором VSK.

Для выключения основных тиристоров необходимо подать управляющий импульс на коммутирующий тиристор VSK. При этом в результате разряда конденсатора Ск в колебательном контуре возникает ток iK, который будет протекать через тот основной тиристор, который в этот момент проводит ток, и будет направлен навстречу этому току. Например, допустим, что ток нагрузки проводил тиристор VS1. При включении тиристора VSK через тиристор VS1 начинает протекать разность токов нагрузки iH и контура iK.

Пока ток iK меньше тока iH, тиристор VS1 будет включен, а диод VD2 выключен, так как к нему приложено обратное напряжение, обусловленное паде­нием напряжения на тиристоре VS1.

Тиристорные пускатели — Электрооборудование и автоматизация сельскохозяйственных агрегатов

При равенстве токов iH и iK тиристор VS1 выключается, ток iK продолжает возрастать, разность токов iK и iH будет протекать через диод VD. На интервале проводимости диода VD2 к тиристору VS1 будет приложено обратное напряжение, равное падению напряжения на диоде VD2. Когда ток iK станет меньше тока iH, диод VD2 выключается, и ток нагрузки iH начинает протекать по контуру диод VD3 — конденсатор СK — реактор LK — тиристор VSK — диод VD1 — нагрузка — источник — диод VD3. При этом будет происходить перезаряд конденсатора СK током нагрузки iH и энергия, запасенная в индуктивности нагрузки, будет переходить в конденсатор СK. Это обстоятельство вызывает необходимость существенно завышать его установленную ем­кость или вводить в схему дополнительные устройства, поглощающие энергию.

Быстродействие рассмотренного ТКИ при использовании его для коммутации цепей с активной нагрузкой ограничено практически только временем выключения тиристоров (обычно десятки микросекунд). Однако при активно-индуктивной нагруз­ке это время увеличивается и зависит от параметров схемы и нагрузки.

Количество основных тиристоров в данном ТКИ может быть уменьшено до одного, как это показано на рис. 2 б. В этом случае упрощается управление ТКИ, но одновременно увеличиваются потери в схеме. Последнее объясняется тем, что при включенном ТКИ ток нагрузки в каждый момент времени протекает по трем элементам: двум диодам и одному тиристору. В основном же процессы в обеих схемах сходны.

В многофазных системах статические контакторы обычно устанавливают отдельно на каждую фазу. При этом некоторые функциональные узлы фазных контакторов могут быть схемно и конструктивно объединены.

Существует много различных схем полупроводниковых контакторов, отличающихся как принципом действия, так и элементной базой. Большинство из них обладают существенными преимуществами перед электромеханическими аппаратами в части быстродействия, надежности и срока службы, а в некоторых случаях имеют и лучшие массогабаритные показатели. Следует, однако, отметить, что всем полупроводниковым контакторам присущ один общий недостаток — невозможность обеспечения полной гальваниче­ской развязки коммутируемых цепей в отключенном состоянии. Это объясняется тем, что сопротивление полностью вы­ключенного полупроводникового прибора всегда имеет ко­нечное значение, в то же время механические контакты обеспечивают полный разрыв цепи.

Предыдущая9101112131415161718192021222324Следующая


Дата добавления: 2015-06-27; просмотров: 2009;


ПОСМОТРЕТЬ ЕЩЕ:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *